Making Earth Science Data Records for Use in Research Environments (MEaSUREs)

README Document for

TOMSN7SO2

Goddard Earth Sciences Data and Information Services Center (GES DISC) http://disc.gsfc.nasa.gov

NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA

Principal Investigators:	Nickolay A. Krotkov, Pawan K. Bhartia, Code 614 <u>Nickolay.A.Krotkov@nasa.gov</u> 301-614-5553
Algorithm Developer:	Brad Fisher , SSAI, Code 614 <u>bradford.fisher@ssaihq.com</u> 301-867-2188
Algorithm Support:	Peter Leonard, ADNET, Code 619 peter.j.leonard@nasa.gov

Last Revised: June 21 2019

Reviewed by: Andrey Savtchenko

Name GES DISC GSFC Code 610.2 Date Goddard Space Flight Center Greenbelt, Maryland

Name External Organization

Revision History

Revision Date	Changes	Author
6/26/2019	reviewed	Nickolay Krotkov
6/22/2019	reviewed	Peter Leonard
6/21/2019	 Updates reflecting Version 3 improvements including: Improvements in step 2 algorithm Improvements in file format to make the TOMSN7SO2 product files work better with Panoply 	Brad Fisher

Table of Contents

1. INTRODUCTION	
1.1 TOMS Nimbus-7 MEaSUREs SO2 Dataset: TOMSN7SO2	5
1.2 TOMS Instrument	5
1.3 Science Background	7
2. MULTI-SATELLITE SO ₂ ALGORITHM	
2.1 General Description	8
2.2 Step 1 Retrieval	9
 2.3 Step 2 Retrieval 2.3.1 FOV Selection Criterium 2.3.2 Interpolation methodology 2.3.3 O₃ and SO₂ corrections 	11 12 13 15
2.4 Soft Calibration of the 340 Channel	17
2.5 SO2 retrieval noise	19
3. DATASET ORGANIZATION	
3.1 File Naming Convention	24
3.2 File Format and Structure	24
 3.3 Key Science Data Fields	25 25 25 26 26
4. DATA CONTENTS	
4.1 Global Attributes	27
4.2 Dimensions	28
 4.3 Data Fields	29 29 29 30 31
5. CONTACTS	
6. REFERENCES	

1. INTRODUCTION

1.1 TOMS Nimbus-7 MEaSUREs SO₂ Dataset: TOMSN7SO2

This document contains a brief description of the TOMSN7SO2 data product. TOMSN7SO2 is a Level 2, orbital track volcanic sulfur dioxide (SO₂) product for the Total Ozone Mapping Spectrometer (TOMS) onboard NASA's Nimbus 7 satellite, which was launched on October 24, 1978 into polar sunsynchronous orbit and collected data from November 1, 1978 to May 6, 1993. This was the first mission to provide daily contiguous global maps of total ozone (O_3) . As part of the NASA's Making Earth System Data Records for Use in Research Environments (MEaSUREs) program, the Goddard Earth Science (GES) Data and Information Data Center (DISC) has released a new SO₂ Earth System Data Record (ESDR), TOMSN7SO2, re-processed using new 4 UV wavelength bands MS SO2 algorithm that spans the full Nimbus 7 data period. TOMSN7SO2 is a Level 2 orbital swath product, which will be used to study the fifteen-year SO_2 record from the Nimbus-7 TOMS and to expand the historical database of known volcanic eruptions.

1.2 TOMS Instrument

TOMS is a fixed-grating Ebert-Fastie monochromator with photomultiplier tube detector that measures solar backscattered ultraviolet (BUV) radiances (I) at 6 narrow wavelengths bands (Full Width at Half Maximum band width ~1.1nm) in the near ultraviolet (UV) spectral region as well as the incident solar irradiances (F) (Heath, *et al.*, 1975). The ratio of radiance to irradiance provides the spectral reflectivity parameter used in the ozone retrieval. The wavelength band centers shown in Table 1 were selected to optimize column ozone retrievals assuming that two pairs of shorter, absorbing wavelengths would be needed to cover the full dynamic range of ozone and solar zenith angles encountered globally, similar to the Dobson Spectrophotometer design. Two additional non-absorbing longer UV-A wavelengths were provided to measure the surface or cloud reflectivity (R) and its spectral dependence.

Channel	Wavelength,	Used in	MS_SO2
Number	vacuum [nm]	SO ₂ retrieval	Retrieved Parameter
1	312.34	Not Used	
2	317.35	Х	SO_2
3	331.06	Х	O_3
4	339.66	Х	dR/dλ
5	359.99	Not Used	
6	379.89	X	R

Table 1

TOMS scans in the cross-track direction in 3° steps from 51° on west side of nadir to 51° on the east, for a total of 35 cross-track samples. The instantaneous field-of-view (FOV) of 3° x 3° results in a footprint varying from a 50 km x 50 km approximately square FOV at nadir to a 125 km by 280 km diamond-shaped FOV at the scan extremes. The total swath width is 3000 km covering Earth's surface in 14 orbits per day.

1.3 Science Background

The original design of the TOMS instrument assumed that ozone was the only significant gaseous absorber in near UV wavelengths (Dave and Mateer 1967). A second absorber was later discovered in 1982 as a high ozone anomaly observed over the El Chichon volcano in Mexico and recognized as SO₂ gas absorption in the volcanic cloud (Krueger 1983). Following the discovery, Krueger et al. (1995) developed a first algorithm to separate the ozone and SO₂ signals and to retrieve the column amount of SO₂. The off-line retrieval has been used on a case-by-case basis to retrieve SO₂ mass from explosive eruptions using TOMS measurements on Nimbus-7 and follow-up missions (Krueger et al., 2000; Carn et al., 2003). The TOMSN7SO2 data product is the first public release of the complete Nimbus-7 TOMS SO_2 Level 2 data, re-processed with a new 4 UV wavelengths algorithm that is fast enough to permit production of the entire global dataset.

2. MULTI-SATELLITE SO₂ ALGORITHM

2.1 General Description

This section describes the new Multi-Satellite SO₂ (MS SO2) [Fisher et al., 2019]. This algorithm builds on the heritage of the TOMS total ozone (TO3) algorithm (Dave and Mateer, 1967, McPeters et al., 1996), but adds sulfur dioxide (SO₂) as a second absorber to the pre-computed BUV look-up tables. The retrieval uses four of the six available spectral bands to retrieve a state vector (\hat{X}) with 4 parameters: SO₂ column amount, O₃ column amount, the Lambertian equivalent reflectivity (LER) at 380 nm, R, and the spectral dependence of R, $dR/d\lambda$. The algorithm relies on spectral differences in SO₂ and O₃ cross sections to simultaneously quantify the amounts of the two trace gases (see Table 1 and Figure 1). SO₂ is more absorbing than O_3 at the shorter channels (312 and 317 nm), whereas O₃ is more absorbing at the longer absorbing channel (331 nm). Figure 1 shows the O₃ and SO₂ spectral cross sections in the near-UV spectral range and the SO_2 to O_3 cross section ratio over the same range. It is the relative difference in the cross-section ratio at 317nm and 331nm that allows for the separation of the two gases. The three vertical bars show the centers of the absorbing spectral bands used in the retrieval.

Figure 1. SO_2 (black) and O_3 (red) cross-sections and their ratio (green) at UV wavelengths. The three vertical bars show the location of the absorbing channels used in the retrieval.

2.2 Step 1 Retrieval

The SO₂ retrieval is performed in two steps and applied iteratively for each FOV. The retrieval starts with a first guess value of total column ozone based on climatology and assuming zero SO₂. The LER is then computed at 380 nm (R). Because O₃ and SO₂ absorption is very weak at this wavelength, R remains fixed during the iterations. The algorithm then uses 3 shorter spectral bands to retrieve $\Delta(\partial R/\partial \lambda)$, ΔO_3 and ΔSO_2 adjustments to the state vector: $\Delta x = [\Delta SO_2, \Delta O_3, \Delta(\partial R/\partial \lambda)]$, assuming a linear R(λ) spectral dependence:

$$\Delta y_i = N_{m_i} - N_{c_i} = \frac{\partial N_{c_i}}{\partial SO_2} \Delta SO_2 + \frac{\partial N_{c_i}}{\partial O_3} \Delta O_3 + \frac{\partial N_{c_i}}{\partial R} (\lambda_i - \lambda_R) \Delta \frac{\partial R}{\partial \lambda}$$
(1)

where i = 1, 2, 3 corresponds to the 317, 331, and 340nm bands and λ_R =380m. The left-hand side of Eq. 1 represents the difference (residual) between the measured and calculated sun normalized BUV radiances expressed in N-value units, defined in Equation 2 as:

N-value =
$$-100\log_{10}(I/F)$$
 (2)

where I is the measured radiance and F is the TOA incoming solar flux. The partial derivatives (Jacobians) on the right-hand side form a Jacobian Kmatrix. The matrix consists of the N value sensitivities associated with linear perturbations in state vector parameters: SO_2 , O_3 and $dR/d\lambda$ (*i.e.*, reflectivity spectral slope)

$$K = \begin{pmatrix} \frac{\partial N_{317}}{\partial SO2} & \frac{\partial N_{317}}{\partial O3} & \frac{\partial N_{317}}{\partial x} (\lambda_i - \lambda_R) \\ \frac{\partial N_{331}}{\partial SO2} & \frac{\partial N_{331}}{\partial O3} & \frac{\partial N_{331}}{\partial R} (\lambda_i - \lambda_R) \\ \frac{\partial N_{340}}{\partial SO2} & \frac{\partial N_{340}}{\partial O3} & \frac{\partial N_{340}}{\partial R} (\lambda_i - \lambda_R) \end{pmatrix}$$
(3)

The K matrix elements are computed as finite differences for each retrieved parameter and each spectral band from the pre-computed BUV radiance look-up tables (LUT). The LUT's nodal points correspond to surface pressure, satelliteviewing geometry (solar zenith, satellite nadir, and relative azimuthal angles), total ozone and column SO₂, assuming TOMS standard Ozone profiles. For SO₂ the algorithm assumes three Gaussian shape profiles (2-km half-width), with different peak SO₂ altitudes: 8 km (middle troposphere, TRM data), 13 km (upper troposphere, TRU data), and 18 km (lower stratosphere, STL data). The radiative transfer (RT) calculations were computed off-line using TOMRAD radiative transfer code (Dave 1965).

The state vector increment, Δx , is defined in (4). The adjustment to Δx after each iteration is subsequently determined by inverting the 3 x 3 Jacobian matrix **K**:

$$\Delta x = K^{-1} \Delta y = \begin{pmatrix} \Delta S O_2 \\ \Delta O_3 \\ \Delta \frac{\partial R}{\partial \lambda} \end{pmatrix}$$
(4)

100

The differentials Δx are added to the previous iteration state x values, beginning with a first guess to obtain the column amounts of SO₂ and O₃ in Dobson units (1 DU= 2.69*10¹⁶ molec·cm⁻²) and $\partial R/\partial \lambda$ [nm⁻¹]. The largest change in SO₂ column amount occurs in the first iteration and the process typically converges in 2-3 iterations depending on the actual SO₂ amount.

2.3 Step 2 Retrieval

The MS_SO2 forward model accounts for $O_3(\Omega)$ and $SO_2(\Sigma)$ absorption and linear spectral changes in R due to the mixing of aerosols in the SO₂ plume. The algorithm, however, does not explicitly characterize the absorption and nonlinear scattering effects of volcanic ash (absorbing) and sulfate (non-absorbing) aerosols. The retrieval errors in Σ and Ω caused by volcanic ash during the first days after an explosive eruption can be significant in the case of major volcanic eruptions like Pinatubo and El Chichon (Krueger et al., 1995; Krotkov et al., 1997). A step 2 procedure was developed to handle explosive eruptions (VEI > 3), in which large Ω anomalies have a propensity to occur in conjunction with high ash concentrations. In step 2, a corrected total ozone Ω_{cor} inside the SO₂ cloud is constrained using the retrieved Ω outside the plume along the orbit for each crosstrack position. The step 2 part of the algorithm was substantially improved in this release (v2). Changes to the algorithm include a modified FOV selection criterion and a better method of interpolating the ozone inside the SO₂ plume.

2.3.1 FOV Selection Criterium

In deciding whether to apply Step 2, the algorithm considers Σ , Ω and aerosol index (AI) retrieved in Step 1. The AI is estimated from retrieved and forward model generated parameters as shown in Eq. (5):

$$AI = \frac{\partial N_{340}}{\partial R} \frac{\partial R}{\partial \lambda} (\lambda_{340} - \lambda_{380}) = -40 \cdot \frac{\partial N_{340}}{\partial R} \frac{\partial R}{\partial \lambda}.$$
 (5)

where $\partial R/\partial \lambda$ characterizes the spectral reflectivity dependence and $\partial N/\partial R$ represents the Jacobian with respect to R retrieved at 340 nm. The AI can be qualitatively used to identify spatial regions affected by absorbing aerosols (dust, smoke, ash). The step 2 selection criterion first identifies FoVs for which either $SO_2 > 15$ DU (inside the plume) or AI > 6 (implying high absorbing aerosols concentrations). The additional AI criterium allows for the selection of FoVs around the edges of the cloud, where the SO₂ can be underestimated due to high aerosol concentrations. In this case, it is assumed that the step 1 SO₂ may have been underestimated due to the ozone error caused by ash absorption. In these cases, the SO₂ error can cause the retrieved SO₂ to be less than 15 DU threshold applied in calculating SO₂ burdens from volcanic sources. The resulting sample of FOVs characterizes the SO₂ cloud region. Each FOV in this sample is then tested to determine whether a second retrieval is performed, depending on whether either $\Omega_{stepl} > \overline{O}_3 + \sigma_{O_3}$ or AI > 1.5 is true. Here \overline{O}_3 represents the regional mean ozone outside the plume and σ_{O_3} represents the standard deviation in the regional mean.

A second retrieval is performed on the FOVs satisfying either selection criterium. The most important step in this process is the ozone correction because this correction directly affects the SO_2 retrieved in step 2. The ozone is corrected by masking the volcanic plume region and then linearly interpolating O_3 outside the plume, along the orbital track for each affected swath position.

2.3.2 Interpolation methodology

The new interpolation scheme is performed piecewise, for the regions above (north) and below (south) of the selected pixel. Ozone values inside the plume area

are excluded from the interpolation. Ozone values exceeding the highest nodal point in the ozone table (e.g., tropical, mid-latitude, and high latitude) are also excluded. The interpolation is performed along the orbital track of the satellite and is confined to a latitudinal range 30° north and south of the target FoV.

Two linear regressions are then performed on each of the two latitudinal subsamples, resulting in two sets of regression parameters north and south of the target FoV. These parameters are used in Eq. (6a) and Eq. (6b) to obtain two values, Ω_1 and Ω_2 , at the position of the target pixel, φ_{Ω_0} :

$$\Omega_1 = m_1 \varphi_{\Omega 0} + b_1 \tag{6a}$$

$$\Omega_2 = m_2 \varphi_{\Omega 0} + b_2 \tag{6b}$$

A corrected ozone is computed by weighting Ω_1 and Ω_2 by the relative distance of the target pixel to the plume's south and north boundaries, d_1 and d_2 , as shown in Eq (7a) and Eq (7b):

$$w_1 = \frac{d1}{d1+d2} \tag{7a}$$

$$w_2 = \frac{d2}{d1+d2}$$
. (7b)

The corrected ozone value, Ω_{cor} , is subsequently determined by computing a distance weighted ozone as shown in Eq. (8),

$$\Omega_{cor} = w_1 \Omega_1 + w_2 \Omega_2. \tag{8}$$

A modified retrieval is then performed on the selected pixels using a 2 x 2 K-matrix that only includes the radiances at 317 and 340 nm. Note that even though the corrected O_3 is not explicitly used in the construction of the K-matrix, it places a fixed constraint on the O_3 node in the LUTs. A step 2 algorithm flag is provided in the product. The flag informs users whether step 2 was applied and which of the above criteria was used in the selection process.

2.3.3 O_3 and SO_2 corrections

The correction to step 1 SO2 retrieval can be significant depending on the size of the O_3 anomaly. For illustration purposes, consider the case of El Chichon, which erupted on April 4, 1982. The step 1 and step 2 SO₂ and O₃ retrieved by TOMS are shown in Fig. 2. The AI is shown in Fig. 3. The SO₂ and O₃ errors due to the mixing of aerosols can be computed from the difference between step 1 and step 2 as shown in Fig. 4. As can be seen in Fig. 4, these errors are highly correlated and have a negative slope. Consequently, an increase in dO₃ due to ash absorption causes a decrease in dSO₂. Since this version has better skill at estimating the corrected ozone, this leads to an improved retrieval of the SO₂ column.

Figure 2. MS_SO2 imagery showing a) Step 1 total column O_3 , b) Step 2 total column O_3 c) Step 1 total column SO₂ and d) Step 2 total column SO₂ from El Chichon eruption on April 4, 1982.

Figure 3. Aerosol Index for the El Chichon eruption on April 4, 1982, computed from retrieved $\partial R/\partial \lambda$.

Figure 4. The differences between Step 2 and Step1 ozone and SO_2 for the April 4 1982 El Chichon case shown in Figure 2. It can be seen that the O_3 errors are anticorrelated with SO_2 step 1 errors.

2.4 Soft Calibration of the 340 Channel

The mean TOMS-retrieved SO₂ background far away from any SO₂ sources is assumed to be zero, but due to noise in the retrieval system (*e.g.*, instrument, forward and inversion models), the retrieved SO₂ values fluctuate around zero (positive and negative). To correct for any residual SO₂ bias in the mean background, the algorithm uses inversion of the K-matrix – what Rogers (2000) refers to as the gain matrix (or G-matrix) – and uses the matrix element associated with the SO₂ sensitivity at 340 nm to calibrate the 340 radiance. An SO₂- and aerosol-free TOMS orbit over the central Pacific was selected for this procedure. A Step 1 retrieval is then performed for this orbit with no soft calibration applied. Using the SO₂ field generated for this orbit, a correction to the 340 radiance is then computed as shown in (9)

$$dN_{340} = Mean(\frac{SO2}{\frac{\partial SO2}{\partial N_{340}}}) \tag{9}$$

where, $\partial SO_2/\partial N_{340}$ is the (2,2) G-matrix element corresponding to the SO₂ sensitivity in the 340 spectral band. Figure 5 shows a plot of the N-value correction applied to the 340 nm channel.

Figure 5. N-Value correction of the 340 nm channel as a function of the swath position. Error bars are also shown. A positive N-value correction results in a small reduction in the retrieved SO_2

2.5 SO₂ retrieval noise

The retrieval of volcanic SO_2 is subject to limitations related to the sensitivity of the instrument and the skill of the forward model in simulating the BUV radiances. Noise in the retrieval system produces a non-biased near-Gaussian distribution in the SO₂ background values with zero expected value. We characterize the sensitivity of the instrument by estimating the standard deviation of the distribution of background SO₂ retrieved in regions where SO₂ concentrations are considered well below the detection limit of the TOMS instrument.

Figure 6 shows background SO₂ PDFs (6a) and standard deviations (6b) applying MS_SO2 algorithm to the Nimbus 7 TOMS and the currently flying next generation hyperspectral Ozone Mapping Profiling Suite Nadir Mapper (OMPS-NM) on board the Suomi National Polar-orbiting Partnership (NPP) and NOAA 20 satellites. The random errors in the MS_SO2 retrieval were estimated from the standard deviation in the SO₂ from a large data sample that included 90 central Pacific orbits, spanning a ten-year period between 1980 and 1990. For this comparison, we selected one month of NPP/OMPS spectral data (central Pacific) and applied the MS_SO2 algorithm using the same four wavelength bands on TOMS (Table 2), which were first convolved with the TOMS bandpass function.

Data were restricted to Σ values between -20 and 20 DU (Fig. 6a). Standard deviations were then computed as a function of the TOMS or OMPS cross-track position as shown in Fig. 6b. Figure 6b can be used to characterize and compare the SO₂ detection limits for Nimbus-7 TOMS and OMPS applying the same MS_SO2 retrieval algorithm using the same four TOMS wavelength bands (Table 2).

Figure 6b shows that TOMS retrieval noise depends on the swath position, varying from \sim 6 DU at nadir to \sim 4 DU at higher viewing angles, while OMPS

20

noise is 2-3 times smaller (~2 DU) and is relatively independent of the cross-track position (Figure 6b). Using the same MS_SO2 algorithm, we subsequently estimate the SO₂ detection limit for TOMS and OMPS-NM to be about 15 DU and 6 DU (~99% confidence level), respectively. We set the TOMS sensitivity threshold for detecting volcanic SO₂ at 15 DU, just below the 99% confidence interval.

We note that applying the hyperspectral Principal Component Analysis (PCA) algorithm (Li et al., 2013) to all the 100-200 wavelengths available from the OMPS-NM hyperspectral measurements, the noise standard deviation is reduced by an order of magnitude to ~0.2-0.5DU, allowing detection of large anthropogenic points sources (emissions more than ~80 kt yr⁻¹) (Fioletov et al., 2016; Zhang et al., 2017).

The random error associated with the SO₂ retrieved inside volcanic clouds can be characterized by comparing two independent UV algorithms applied to the same BUV measurements (Figure 7). For several large volcanic cases, we compared MS_SO2 retrievals with independent SO₂ retrievals from the Principal Components Analysis algorithm (PCA). For this comparison, the PCA algorithm has been modified to use all 6 TOMS spectral channels (normally it is applied to a hyper spectral instruments). The random error is estimated by computing the standard deviation in clean regions of the atmosphere. The random error provides a measure of the sensitivity of the instrument. For SO₂ mass calculations, we apply an SO₂ threshold of 15 DU (about 2 to 3 σ with respect to figure 6a).

Figure 6. a) Noise PDF for background SO₂ retrievals applying the same MS_SO2 algorithm to the Nimbus-7 TOMS and SNPP OMPS measurements b) the SO₂ retrieval noise standard deviation for TOMS (solid line) and OMPS (dashed line) as a function of the cross-track position. OMPS noise is a factor of 2-3 less compared to TOMS and less dependent on cross-track position.

Figure 7. Scatterplot comparing volcanic SO₂ retrievals applying two independent MS_SO2 and the PCA algorithms to the TOMS measurements for several major eruptions spanning the full dynamic range of the SO₂ retrievals.

3. DATASET ORGANIZATION

The TOMSN7SO2 product provides a set of Level 2 orbital swath files produced by applying the MS_SO2 algorithm to the complete N7-TOMS data record.

3.1 File Naming Convention

The TOMSN7SO2 data granules (files) are named as in this example:

TOMS-N7_L2-TOMSN7SO2_1991m0817t090821-o64696_v03-00-2019m0607t165614.h5,

where the components of filename are as follows:

- 1. Instrument (TOMS)
- 2. Spacecraft (N7)
- 3. Process Level (L2)
- 4. ESDT Short Name (TOMSN7SO2)
- 5. Date and Time at Start of Orbit (1991-08-17 09:08:21 UTC)
- 6. Orbit Number (64696)
- 7. Product Version (03-00)
- 8. Production Date and Time (2019-06-07 16:56:14 UTC)
- 9. File Type (h5)

3.2 File Format and Structure

The TOMSN7SO2 data granules are in plain HDF5 that is netCDF4-

compatible and CF-compliant. Each TOMSN7SO2 data granule contains global

attributes, dimensions, an ancillary data group, a geolocation data group, a science

data group, and a sensor data group.

3.3 Key Science Data Fields

The TOMSN7SO2 science product provides four key science data fields associated with the retrieval: SO₂ column amount, O₃ column amount, the Lambertian Equivalent Reflectivity at 380 nm (R), and the reflectivity spectral slope ($\partial R/\partial \lambda$). The other retrieved parameters provide important diagnostic information.

3.3.1 SO₂ Column Amount

ColumnAmountSO2_TRM, ColumnAmountSO2_TRU and ColumnAmountSO2_STL are, respectively, the column amounts for SO₂ in assumed Gaussian vertical distributions with 2-km standard deviations centered in the middle troposphere (8 km), the upper tropical troposphere (13 km) and the lower stratosphere (18 km).

3.3.2 O₃ Column Amount

ColumnAmountO3_TRM, ColumnAmountO3_TRU and ColumnAmountO3_STL are, respectively, the O₃ total column amounts that correspond to the SO₂ retrievals for the middle troposphere (8 km), the upper troposphere (13 km) and the lower stratosphere (18 km).

3.3.3 Lambertian Equivalent Reflectivity at 380 nm

The FOV effective Lambertian Equivalent Reflectivity at 380 nm (LER380) models the combined surface, clouds and aerosols in TOMS FOV. It is independent of the ozone, SO2 or height of the assumed SO₂ layer.

3.3.4 Reflectivity Spectral Dependence $(\partial R/\partial \lambda)$

dRdlambda_TRM, dRdlambda_TRU and dRdlambda_STL are, respectively, the reflectivity spectral slopes ($\partial R/\partial \lambda$), which represent the combined spectral dependence of surface, clouds and aerosols in TOMS FOV. They correspond to the SO₂ retrievals for the middle troposphere (8 km), the upper troposphere (13 km) and the lower stratosphere (18 km).

4. DATA CONTENTS

Each TOMSN7SO2 data granule contains global attributes, dimensions, an ancillary data group, a geolocation data group, a science data group, and a sensor

data group. This section provides specific details regarding these components, as shown in Figure 8.

Figure 8. Shows 4 main data groups and dimensions.

4.1 Global Attributes

There are 43 global attributes in each TOMSN7SO2 data granule as shown in Figure 9.

```
Number of attributes = 43
  AuthorAffiliation = NASA/GSFC
  AuthorName = N. Krotkov, et al.
  Conventions = CF-1.6
  DataSetQuality = Under investigation.
  DayNightFlag = Day
  EastBoundingCoordinate = 180.0
  EquatorCrossingDate = 1991-08-17
  EquatorCrossingLongitude = 13.719999
  EquatorCrossingTime = 10:00:26
  FOVResolution = 50 \times 50 \text{ km}
  GranuleDayOfMonth = 17
  GranuleDayOfYear = 229
  GranuleMonth = 8
  GranuleYear = 1991
  HDFVersion = 5-1.8.12
  InputPointer = TOMS-N7_L2-N7T03_1991m0817t0937-o64696_v001-2015m0910t025628.he5
  InstrumentShortName = TOMS
  LocalGranuleID = TOMS-N7_L2-TOMSN7S02_1991m0817t090821-o64696_v03-00-2019m0607t165614.h5
  LocalityValue = Global
  LongName = TOMS/N7 MS SO2 Vertical Column 1-Orbit L2 Swath 50x50 km
  NorthBoundingCoordinate = 89.74238
  NumTimes = 392
  OrbitNumber = 64696
  PGEVersion = 1.1.4
  ParameterName = Vertical Column Sulfur Dioxide
  PlatformShortName = Nimbus 7
  ProcessLevel = 2
  ProcessingCenter = ACPS
  ProductType = L2 Swath
  ProductionDateTime = 2019-06-07T16:56:14.0Z
  RangeBeginningDate = 1991-08-17
  RangeBeginningTime = 09:08:21
  RangeEndingDate = 1991-08-17
  RangeEndingTime = 10:52:29
  SensorShortName = Single Monochromator
  ShortName = TOMSN7S02
  Source = N7/TOMS
  SouthBoundingCoordinate = -78.02539
  TAI93At0z0fGranule = -4.3459201E7
  VersionID = 3
  WestBoundingCoordinate = -180.0
  identifier product doi = 10.5067/MEASURES/S02/DATA204
  identifier_product_doi_authority = http://dx.doi.org/
```

```
Figure 9. TOMSN7SO2 Global attributes
```

4.2 Dimensions

There are six dimensions in each TOMSN7SO2 data granule (Figure 5):

nCorners - The dimension representing the four ground-pixel corners of the TOMS FOV.

- nTimes The dimension representing the time of observation.
- nWavel4 The dimension representing the subset of four TOMS wavelengths used in the retrievals, i.e. 317,331,340 and 380.
- nWavel6 The dimension representing all six TOMS wavelengths.
- nXtrack The dimension representing the 35 cross-track scan positions.

4.3 Data Fields

4.3.1 Ancillary Data

There are only two fields, CloudPressure and TerrainPressure, in the ancillary data group in each TOMSN7SO2 data.

4.3.2 Geolocation Data

There are ten fields in the geolocation data group in each TOMSN7SO2 data granule as shown in Figure 10.

Figure 10. Geolocation Data Group

4.3.3 Science Data

There are 27 fields in the science data group in each TOMSN7SO2 data granule as shown in Figure 11.

Figure 11. Science Data Group

4.3.4 Sensor Data

There is only one field, Wavelength, in the sensor data group in each TOMSN7SO2 data granule. This field contains a list of the six TOMS wavelengths (312.34, 317.35. 331.06, 339.66, 359.88 and 379.95).

5. CONTACTS

Principal Investigator:	Nickolay Krotkov <u>Nickolay.A.Krotkov@nasa.gov</u> 301-6114-5553
Algorithm Developer:	Brad Fisher <u>bradford.fisher@ssaihq.com</u> 301-867-2188
Algorithm Support:	Peter Leonard peter.j.leonard@nasa.gov

6. DATA CITATION

To cite the data in publications:

Nickolay A. Krotkov, Pawan K. Bhartia, Bradford Fisher, Peter Leonard (2017), TOMS/N7 MS SO2 Vertical Column 1-Orbit L2 Swath 50x50 km V2.00, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [*Data Access Date*], 10.5067/MEASURES/SO2/DATA202

6. REFERENCES

- Carn, S.A., Krueger, A.J., Bluth, G.J.S., Schaefer, S.J., Krotkov, N.A., Watson, I.M. and Datta, S. (2003), Volcanic eruption detection by the Total Ozone Mapping Spectrometer (TOMS) instruments: a 22-year record of sulfur dioxide and ash emissions, In: <u>Volcanic Degassing</u> (eds. C. Oppenheimer, D.M. Pyle and J. Barclay), *Geological Society, London, Special Publications*, **213**, pp.177-202.
- Dave, J. V., and C. L. Mateer, A preliminary study on the possibility of estimating total atmospheric ozone from satellite measurements, *J. Atm. Sci.*, 24, 414–427, 1967.
- Fisher, B. L., Krotkov, N. A., Bhartia, P. K., Li, C., Carn, S., Hughes, E., and Leonard, P. J. T. (2019), A new discrete wavelength BUV algorithm for consistent volcanic SO2 retrievals from multiple satellite missions, Atmos. Meas. Tech. Discuss., doi:<u>10.5194/amt-2019-150</u>, 2019.
- Heath, D.F., A.J. Krueger, H.A. Roeder, and B.D. Henderson, The Solar Backscatter Ultraviolet and Total Ozone Mapping Spectrometer (SBUV/TOMS) for Nimbus G, *Optical Engineering*, 14, 323, 1975
- Krotkov, N. A., A. J. Krueger, P. K. Bhartia, Ultraviolet optical model of volcanic clouds for remote sensing of ash and sulfur dioxide, *J. Geophys. Res.*, 102(D18), 21891-21904, 10.1029/97JD01690, 1997
- Krueger, A.J., Sighting of El Chichón sulfur dioxide clouds with the Nimbus 7 Total Ozone Mapping Spectrometer, Science, 220, p. 1377-1378, 1983.
- Krueger, A.J., L.S. Walter, P.K. Bhartia, C.C. Schnetzler, N.A. Krotkov, I. Sprod, and G.J.S. Bluth, Volcanic sulfur dioxide measurements from the Total Ozone Mapping Spectrometer (TOMS) Instruments, Journal of Geophysical Research, 100, D7, 14,057 - 14,076, 1995.
- Krueger, A. J., S. J. Schaefer, N. Krotkov, G. Bluth, and S. Barker, Ultraviolet remote sensing of volcanic emissions, in Remote Sensing of Active Volcanism, Geophys. Monogr. Ser., vol. 116, edited by P. J. Mouginis-Mark, J. A. Crisp, and J. H. Fink, pp. 25-43, AGU, Washington, D. C., 2000.
- Li, C., Krotkov, N. A., Carn, S., Zhang, Y., Spurr, R. J. D., and Joiner, J.: Newgeneration NASA Aura Ozone Monitoring Instrument (OMI) volcanic SO₂ dataset: Algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS), Atmos. Meas. Tech., 10, 445-458, doi:10.5194/amt-10-445-2017, 2017.
- McPeters, et al., Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data products user's guide, NASA Reference Publication 1384, pp1-67, 1996